Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

trans-Cyano(6-methyl-1,4,8,11-tetra-azacyclotetradecan-6-amine)cobalt(III) bis(perchlorate) hydrate and trans-hydroxo(6-methyl-1,4,8,11-tetraazacyclotetradecan-6-amine)cobalt(III) bis(perchlorate)

Paul V. Bernhardt* and Brendan P. Macpherson

Department of Chemistry, The University of Queensland, Brisbane,
Queensland 4072, Australia
Correspondence e-mail: p.bernhardt@uq.edu.au

Received 7 October 2003
Accepted 16 October 2003
Online 14 November 2003
The crystal structures of a pair of closely related macrocyclic cyano- and hydroxopentaaminecobalt(III) complexes, as their perchlorate salts, are reported. Although the two complexes, $\left[\mathrm{Co}(\mathrm{CN})\left(\mathrm{C}_{11} \mathrm{H}_{27} \mathrm{~N}_{5}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Co}(\mathrm{OH})\left(\mathrm{C}_{11} \mathrm{H}_{27} \mathrm{~N}_{5}\right)\right]$ $\left(\mathrm{ClO}_{4}\right)_{2}$, exhibit similar conformations, significant differences in the $\mathrm{Co}-\mathrm{N}$ bond lengths arise from the influence of the sixth ligand (cyano as opposed to hydroxo). The ensuing hydrogenbonding patterns are also distinctly different. Disorder in the perchlorate anions was clearly resolved and this was rationalized on the basis of distinct hydrogen-bonding motifs involving the anion O atoms and the $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ donors.

Comment

The pendant amino-substitutued cyclam 6-methyl-1,4,8,11-tetraazacyclotetradecane-6-amine $\left(L^{1}\right)$ has the capability of binding as a pentadentate ligand via its four secondary amine and single primary amine N -donors. The ligand may coordinate in a folded (cis) (Lawrance et al., 1992) or planar (trans) configuration (Hambley et al., 1992). Within the trans form, there are two possible N -based isomeric forms, viz. RSRS (trans-I) (Bernhardt et al., 2000), with all amine H atoms on the same side of the macrocyclic plane, and RRSS (trans-III) (Hambley et al., 1992), with two H atoms up and two down. In six-coordinate complexes of L^{1}, the trans-I form has been most commonly encountered in complexes bearing the $\left[\mathrm{Co} L^{1}\right]$ moiety (Bernhardt et al., 2000, 2002).

The related hexaamine L^{2} may bind in a hexadentate (Bernhardt et al., 1989, 1991; Bernhardt, Comba et al., 1990), pentadentate (Bernhardt, Lawrance, Comba et al., 1990; Curtis et al., 1993) or tetradentate (Curtis et al., 1992; Bernhardt, Lawrance, Patalinghug et al., 1990) mode, depending on the protonation state of the pendant amines and the preferred coordination geometry of the metal ion. When bulky substi-
tuents are attached to one of the pendant amines of L^{2} (e.g. $\left.L^{3 a-c}\right)$, coordination of the substituted amine is disfavoured on steric grounds (Bernhardt \& Hayes, 2002). Pentadentate coordination by ligands such as $L^{3 a-c}$ has obvious parallels with the chemistry of L^{1}.

(I)

In this work, we report the crystal structures of trans$\left[\mathrm{CoL}{ }^{1} \mathrm{CN}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O},(\mathrm{I})$, and trans- $\left[\mathrm{CoL} L^{1} \mathrm{OH}\right]\left(\mathrm{ClO}_{4}\right)_{2},(\mathrm{II})$, where both complexes are in the trans-I configuration. These structures represent rare examples of structurally characterized cyano- and hydroxopentaaminecobalt(III) complexes.

The structure of (I) (Fig. 1) reveals the expected scorpionate conformation of the macrocyclic ligand, with the pendant amine tail coordinating above the CoN_{4} plane and trans to the cyano ligand. The trans-I N-based isomer is apparent. As expected, the $\mathrm{Co}-\mathrm{CN}$ coordinate bond is the shortest (Table 1). The four secondary amine coordinate bonds are similar, and the $\mathrm{Co}-\mathrm{N}$ bond to the pendant amine is significantly longer. For comparison, in all other high-resolution crystal structures of $\mathrm{Co}^{\text {III }}$ complexes containing the

Figure 1
A view of the complex cation in (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
pentadentate-coordinated L^{1} moiety, including derivatives such as $L^{3 a-c}$, the five $\mathrm{Co}-\mathrm{N}$ bonds lie within a relatively narrow range ($1.94-1.96 \AA$). In (I), there is a significant increase in the average $\mathrm{Co}-\mathrm{N}$ bond length; upon closer inspection, the four in-plane $\mathrm{Co}-\mathrm{N}$ bonds span the range 1.956 (3)-1.975 (3) \AA, while the bond to the pendant amine is significantly longer [1.990 (2) Å]. This axial elongation may be attributed to the trans influence of the cyano ligand, as no significant differences between the bond lengths involving the secondary or primary amines have been seen in chloro (Bernhardt et al., 2000; Bernhardt \& Macpherson, 2003), N -bound ferrocyanide (Bernhardt et al., 2000) or ferricyanide (Bernhardt et al., 2002) complexes bearing the $\left[\mathrm{Co} L^{1}\right]$ moiety. Furthermore, in $\mathrm{Na}\left[\mathrm{CoL}{ }^{3 b} \mathrm{CN}\right]\left(\mathrm{ClO}_{4}\right)_{3}$, the only other cyanopentaaminecobalt(III) complex to be structurally characterized to date, a similar trans influence of the cyano ligand on the pendant amine coordinate bond length $[2.001$ (5) \AA] was observed (Bernhardt \& Hayes, 2002).

Figure 2
A plot of the hydrogen bonding in (I). Alkyl H atoms have been omitted. See Table 2 for symmetry codes.

Figure 3
A plot of the perchlorate disorder in (I). Alkyl H atoms have been omitted. See Table 2 for the perchlorate symmetry code. Atoms labelled with an asterisk (*) are at the symmetry position $\left(1-x, \frac{1}{2}+y, 1-z\right)$ and atoms labelled with a hash sign (\#) are at the symmetry position $(x-1$, $y+1, z)$.

Hydrogen bonding is a feature of the structure of (I) (Fig. 2). The complex cations are arranged into a linear polymeric hydrogen-bonded array, with the pendant amino group as donor and the cyano ligand as acceptor (Table 2). All remaining $\mathrm{N}-\mathrm{H}$ groups participate in hydrogen bonds to either the perchlorate anions or the water molecule. Of note is the bifurcated hydrogen bond formed between the water atom O 1 and the pair of adjacent secondary amines (N 2 and N 3).

Disorder in the positions of perchlorate atoms $\mathrm{O} 1 B, \mathrm{O} 1 C$ and $\mathrm{O} 1 D\left(\mathrm{O} 1 B^{\prime \prime}, \mathrm{O} 1 C^{\prime \prime}\right.$ and $\left.\mathrm{O} 1 D^{\prime \prime}\right)$ was resolved and two distinct orientations of the anion were identified, related by a ca 70° rotation of the anion about the $\mathrm{Cl} 1-\mathrm{O} 1 A$ bond. The complementary occupancies of the two contributors were 83 and 17%, and no geometric restraints were used in the refinement. The hydrogen bonds present in these two orientations are illustrated in Fig. 3. In the major contributor, atoms $\mathrm{O} 1 C$ and O1D participate in strong hydrogen-bonding interactions with the pendant amine and the water molecule (Table 2). Although these two interactions remain in the alternate minor orientation, they are somewhat more acute and hence weaker. To compensate for this misalignment, the minor contributor gains an extra hydrogen bond, with atom $\mathrm{O} 1 B^{\prime \prime}$ as acceptor for a water molecule, whereas atom $\mathrm{O} 1 B$ has no partner in the major form.

The structure of (II) (Fig. 4) has also been determined. The conformation of the macrocycle is identical to that seen in (I), but the $\mathrm{Co}-\mathrm{N}$ bond lengths (Table 3) now lie within the normal range for $\mathrm{Co}^{\text {III }}$ complexes of L^{1} and pentadentatecoordinated L^{2}, and the Co-N5 bond length is not particularly long.

Substitution of cyano (a hydrogen-bond acceptor) with hydroxo (both a donor and an acceptor) results in a quite different hydrogen-bonding pattern for (II) (Fig. 5). Unlike the polymeric hydrogen-bonded chain seen in (I), the cations in (II) form centrosymmetric dimers, with the hydroxo O atom of one cation participating in a bifurcated hydrogen bond with the secondary amine groups N 2 and N 3 on an adjacent complex (Table 4). This motif is reminiscent of that seen in (I), where the water molecule plays the role of acceptor in place of

Figure 4
A view of the complex cation in (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
the hydroxo ligand. All other amine H atoms (except that attached to N1) and the hydroxo ligand participate in hydrogen bonding with the perchlorate anions.

Disorder was identified in both perchlorate anions in (II) ($\mathrm{O} 1 B / \mathrm{O} 1 C / \mathrm{O} 1 D$ and $\mathrm{O} 1 B^{\prime \prime} / \mathrm{O} 1 C^{\prime \prime} / \mathrm{O} 1 D^{\prime \prime}$, and $\mathrm{O} 2 B / \mathrm{O} 2 C / \mathrm{O} 2 D$ and $\left.\mathrm{O} 2 B^{\prime \prime} / \mathrm{O} 2 C^{\prime \prime} / \mathrm{O} 2 D^{\prime \prime}\right)$. The contributors were again refined with complementary occupancies (91 and 9\%) without geometrical restraints. The two contributors (Fig. 6) to disorder in anion 1 are related by a $c a 40^{\circ}$ rotation about $\mathrm{Cl} 1-$ $\mathrm{O} 1 A$. In the major orientation, atoms $\mathrm{O} 1 B$ and $\mathrm{O} 1 D$ accept strong hydrogen bonds from $\mathrm{N} 4-\mathrm{H} 4$ and $\mathrm{O} 1-\mathrm{H} 1 C$. In the minor contributor, only atom $\mathrm{O} 2 D^{\prime \prime}$ is hydrogen bonded, in a bifurcated motif with both $\mathrm{N} 4-\mathrm{H} 4$ and $\mathrm{O} 1-\mathrm{H} 1 C$. Anion 2 bridges the pendant amines of adjacent cations. Rotation about $\mathrm{Cl} 2-\mathrm{O} 2 A$, again by $c a 40^{\circ}$, generates the two contributors, each of which forms a pair of hydrogen bonds of similar strength to two different complex cations.

In conclusion, some interesting variations in the structures of two closely related macrocyclic pentaamine complexes of $\mathrm{Co}^{\text {III }}$ have been identified. Introduction of a cyano ligand into the sixth coordination site, (I), leads to a lengthening of the $\mathrm{Co}-\mathrm{N}$ bonds and a significant extension of the $\mathrm{Co}-\mathrm{N}$ bond trans to the cyano ligand. By comparison, the coordinate bonds in the hydroxo analogue, (II), are typical of other

Figure 5
A plot of the hydrogen bonding in (II). Alkyl H atoms have been omitted. See Table 4 for symmetry codes.

Figure 6
A plot of the perchlorate disorder in (II). Alkyl H atoms have been omitted. The atom labelled with an asterisk (*) is at the symmetry position $\left(\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$.
complexes bearing the $\left[\mathrm{Co} L^{1}\right]$ or pentadentate-coordinated [$\mathrm{Co} L^{2}$] moiety. Perchlorate disorder was resolved and rationalized on the basis of distinct hydrogen-bonding patterns.

Experimental

The precursor trans-I-[CoL $\left.{ }^{1} \mathrm{Cl}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (Bernhardt et al., 2000) was converted to the cyano complex by stirring an aqueous solution of the complex at 298 K for 2 h in the presence of a stoichiometric amount of KCN in a well ventilated fume hood. The compound was purified by cation-exchange chromatography and then crystallised as (I) by slow evaporation of a concentrated NaClO_{4} solution of the complex. The hydroxo analogue, (II), was prepared by base hydrolysis of trans-$\mathrm{I}-\left[\mathrm{CoL}{ }^{1} \mathrm{Cl}\right]\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{pH}=10)$ at room temperature, followed by slow evaporation of the solution at this pH .

Compound (I)

Crystal data

$\left[\mathrm{Co}(\mathrm{CN})\left(\mathrm{C}_{11} \mathrm{H}_{27} \mathrm{~N}_{5}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2} \mathrm{H}_{2} \mathrm{O}$
$M_{r}=531.24$
Monoclinic, $P 2_{1}$
$a=7.4158$ (5) \AA
$b=8.9373$ (8) \AA
$c=16.228$ (2) \AA
$\beta=100.218$ (7) ${ }^{\circ}$
$V=1058.49(18) \AA^{3}$

$$
Z=2
$$

$D_{x}=1.667 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=10.8-14.2^{\circ}$
$\mu=1.12 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.5 \times 0.2 \times 0.2 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
$R_{\text {int }}=0.028$
diffractometer
Non-profiled $\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.686, T_{\text {max }}=0.799$
2789 measured reflections
2240 independent reflections
2111 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R(F)=0.029$
$w R\left(F^{2}\right)=0.075$
$S=1.11$
2240 reflections
285 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0567 P)^{2}\right.$
$+0.0357 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.29 \mathrm{e}^{\text {max }} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.46 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.046 (3)
Absolute structure: Flack (1983), 193 Friedel pairs
Flack parameter $=0.036(15)$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (I).

$\mathrm{Co}-\mathrm{N} 1$	1.963 (2)	$\mathrm{Co}-\mathrm{N} 4$	1.975 (3)
$\mathrm{Co}-\mathrm{N} 2$	1.956 (3)	$\mathrm{Co}-\mathrm{N} 5$	1.990 (2)
$\mathrm{Co}-\mathrm{N} 3$	1.960 (3)	$\mathrm{Co}-\mathrm{C} 12$	1.901 (3)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 2$	87.82 (14)	$\mathrm{N} 2-\mathrm{Co}-\mathrm{C} 12$	91.22 (14)
N1-Co-N3	175.76 (14)	N3-Co-N4	87.73 (13)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 4$	95.88 (14)	N3-Co-N5	84.84 (11)
N1-Co-N5	92.67 (10)	N3-Co-C12	90.17 (12)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{C} 12$	92.04 (12)	N4-Co-N5	94.06 (15)
N2-Co-N3	88.52 (12)	N4-Co-C12	90.02 (14)
$\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 4$	176.06 (13)	N5-Co-C12	173.41 (15)
N2-Co-N5	84.37 (15)		

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2 D^{\mathrm{i}}$	0.91	2.18	$2.954(4)$	142
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$	0.91	2.37	$3.122(4)$	140
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O} 2 A^{\mathrm{ii}}$	0.91	2.40	$3.185(5)$	145
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{O} 1$	0.91	2.18	$2.965(5)$	144
$\mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{O} 2 C^{\mathrm{iii}}$	0.91	2.23	$3.115(5)$	163
$\mathrm{~N} 5-\mathrm{H} 5 C \cdots \mathrm{~N} 6^{\text {iv }}$	0.90	2.23	$3.073(4)$	156
$\mathrm{~N} 5-\mathrm{H} 5 D \cdots \mathrm{O} 1 C^{\prime \prime v}$	0.90	2.17	$2.99(2)$	150
$\mathrm{~N} 5-\mathrm{H} 5 D \cdots \mathrm{O} 1 C^{\mathrm{v}}$	0.90	2.33	$3.173(8)$	155
$\mathrm{O} 1-\mathrm{H} 1 C \cdots \mathrm{O} 1 D^{\text {vi }}$	0.97	2.02	$2.930(7)$	156
$\mathrm{O} 1-\mathrm{H} 1 C \cdots \mathrm{O} 1 D^{\prime \text { vi }}$	0.97	2.33	$3.11(4)$	137
$\mathrm{O} 1-\mathrm{H} 1 D \cdots \mathrm{O} 2 A^{\text {ii }}$	0.98	2.07	$2.819(5)$	132
$\mathrm{O} 1-\mathrm{H} 1 D \cdots \mathrm{O} 1 B^{\prime \prime \text { ii }}$	0.98	2.35	$3.12(3)$	136

Symmetry codes: (i) $1-x, \frac{1}{2}+y, 2-z$; (ii) $1+x, y, z$; (iii) $1+x, 1+y, z$; (iv) $x-1, y, z$; (v) $x, 1+y, z$; (vi) $1-x, \frac{1}{2}+y, 1-z$.

Compound (II)

Crystal data

$\left[\mathrm{Co}(\mathrm{OH})\left(\mathrm{C}_{11} \mathrm{H}_{27} \mathrm{~N}_{5}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$
$M_{r}=504.21$
Monoclinic, $P 2_{1} / n$
$a=14.817$ (5) \AA
$b=9.535(2) \AA$
$c=15.409(8) \AA$
$\beta=115.91$ (3) ${ }^{\circ}$
$V=1958.1(13) \AA^{3}$
$Z=4$
$D_{x}=1.71 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 23
\quad reflections
$\theta=11.2-13.4^{\circ}$
$\mu=1.21 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, red
$0.5 \times 0.3 \times 0.3 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer Non-profiled ω scans
3569 measured reflections
3430 independent reflections
2406 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.071$

$$
\begin{aligned}
& \theta_{\max }=25.0^{\circ} \\
& h=0 \rightarrow 17 \\
& k=0 \rightarrow 11 \\
& l=-18 \rightarrow 16 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \mathrm{~min} \\
& \quad \text { intensity decay: }-8 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R(F)=0.049$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0915 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.142$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.70 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.69 \mathrm{e}^{-3}$
3430 reflections
278 parameters

Table 4
Hydrogen-bonding geometry ($\AA{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H2 $\cdots \mathrm{O}^{\text {i }}$	0.91	2.04	$2.892(5)$	156
$\mathrm{~N} 3-\mathrm{H} 3 \cdots 1^{\mathrm{i}}$	0.91	2.02	$2.878(5)$	157
$\mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{O} 1 B$	0.91	2.46	$3.301(7)$	155
$\mathrm{~N} 5-\mathrm{H} 5 C \cdots \mathrm{O} 2 D^{\prime \prime \text { ii }}$	0.90	2.24	$3.04(4)$	148
$\mathrm{~N} 5-\mathrm{H} 5 C \cdots \mathrm{O} 2 D^{\text {ii }}$	0.90	2.26	$3.128(7)$	163
N5-H5D $\cdots \mathrm{O} 2 C$	0.90	2.13	$2.935(6)$	148
N5-H5D $\cdots \mathrm{O} 2 C^{\prime \prime}$	0.90	2.14	$2.97(5)$	153
$\mathrm{O} 1-\mathrm{H} 1 C \cdots \mathrm{O} 1 D$	0.76	2.16	$2.879(5)$	158
$\mathrm{O} 1-\mathrm{H} 1 C \cdots \mathrm{O} 1 D^{\prime \prime}$	0.76	2.22	$2.94(5)$	159
$\mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{O} 1 D^{\prime \prime}$	0.91	2.45	$3.18(6)$	137

Symmetry codes: (i) $1-x,-y,-z$; (ii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.
ture: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLUTON (Spek, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

PVB acknowledges financial support from the University of Queensland and the Australian Research Council.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1425). Services for accessing these data are described at the back of the journal.

References

Bernhardt, P. V., Comba, P., Curtis, N. F., Hambley, T. W., Lawrance, G. A., Maeder, M. \& Siriwardena, A. (1990). Inorg. Chem. 29, 3208-3213.
Bernhardt, P. V. \& Hayes, E. J. (2002). Inorg. Chem. 41, 2892-2902.
Bernhardt, P. V., Lawrance, G. A., Comba, P., Martin, L. L. \& Hambley, T. W. (1990). J. Chem. Soc. Dalton Trans. pp. 2859-2862.

Bernhardt, P. V., Lawrance, G. A. \& Hambley, T. W. (1989). J. Chem. Soc. Dalton Trans. pp. 1059-1065.
Bernhardt, P. V., Lawrance, G. A., Maeder, M., Rossignoli, M. \& Hambley, T. W. (1991). J. Chem. Soc. Dalton Trans. pp. 1167-1170.

Bernhardt, P. V., Lawrance, G. A., Patalinghug, W. C., Skelton, B. W., White, A. H., Curtis, N. F. \& Siriwardena, A. (1990). J. Chem. Soc. Dalton Trans. pp. 2853-2858.
Bernhardt, P. V. \& Macpherson, B. P. (2003). Acta Cryst. C59, m467-m470.
Bernhardt, P. V., Macpherson, B. P. \& Martinez, M. (2000). Inorg. Chem. 39, 5203-5208.
Bernhardt, P. V., Macpherson, B. P. \& Martinez, M. (2002). J. Chem. Soc. Dalton Trans. pp. 1435-1441.
Curtis, N. F., Gainsford, G. J., Siriwardena, A. \& Weatherburn, D. C. (1993). Aust. J. Chem. 46, 755-786.
Curtis, N. F., Robinson, W. T. \& Weatherburn, D. C. (1992). Aust. J. Chem. 45, 1663-1680.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hambley, T. W., Lawrance, G. A., Martinez, M., Skelton, B. W. \& White, A. H. (1992). J. Chem. Soc. Dalton Trans. pp. 1643-1648.

Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Lawrance, G. A., Manning, T. M., Maeder, M., Martinez, M., O'Leary, M. A., Patalinghug, W. C., Skelton, B. W. \& White, A. H. (1992). J. Chem. Soc. Dalton Trans. pp. 1635-1641.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. Release 97-2. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

